com
.
simiacryptus
.
mindseye
.
dataframes
DataframeModeler
Related Docs:
object DataframeModeler
|
package dataframes
final
case class
DataframeModeler
(
strategy:
ModelingStrategy
,
path:
String
=
""
,
ctx:
ModelingData
=
new ModelingData
)
extends
Logging
with
Product
with
Serializable
Linear Supertypes
Serializable
,
Serializable
,
Product
,
Equals
,
Logging
,
AnyRef
,
Any
Ordering
Alphabetic
By Inheritance
Inherited
DataframeModeler
Serializable
Serializable
Product
Equals
Logging
AnyRef
Any
Hide All
Show All
Visibility
Public
All
Instance Constructors
new
DataframeModeler
(
strategy:
ModelingStrategy
,
path:
String
=
""
,
ctx:
ModelingData
=
new ModelingData
)
Value Members
final
def
!=
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
final
def
##
()
:
Int
Definition Classes
AnyRef → Any
final
def
==
(
arg0:
Any
)
:
Boolean
Definition Classes
AnyRef → Any
def
accumulate
(
buffer:
DeltaSet
[
UUID
]
,
layers:
Seq
[
Layer
]
,
representationKeys:
List
[
String
]
,
transformKeys:
Seq
[
String
]
)
(
uuid:
UUID
,
delta:
Array
[
Double
]
)
:
Unit
final
def
asInstanceOf
[
T0
]
:
T0
Definition Classes
Any
def
asTrainable
(
dataFrames:
DataFrame
*
)
(
layers:
Layer
*
)
(
implicit
sparkSession:
SparkSession
)
:
ArrayTrainable
def
child
(
name:
String
)
:
DataframeModeler
def
clone
()
:
AnyRef
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
...
)
def
convertToResults
(
field:
DataType
,
data: ⇒
Seq
[_]
)
:
Result
val
ctx
:
ModelingData
final
def
eq
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
def
eval
(
dataFrames:
DataFrame
*
)
(
layers:
Layer
*
)
(
implicit
sparkSession:
SparkSession
)
:
Result
def
evalToDataframe
(
dataFrames:
DataFrame
*
)
(
name:
String
,
layers:
Layer
*
)
(
implicit
sparkSession:
SparkSession
)
:
DataFrame
def
evaluateRepresentations
(
values:
Seq
[
Any
]
)
:
Result
def
finalize
()
:
Unit
Attributes
protected[
java.lang
]
Definition Classes
AnyRef
Annotations
@throws
(
classOf[java.lang.Throwable]
)
def
findLayer
(
layers:
Seq
[
Layer
]
,
uuid:
UUID
)
:
Option
[
Layer
]
final
def
getClass
()
:
Class
[_]
Definition Classes
AnyRef → Any
def
getMoments
(
doubles:
Double
*
)
:
Array
[
Double
]
def
getRepresentation
(
key:
String
)
:
Tensor
def
getRepresentationKeys
(
field:
DataType
,
data:
Seq
[_]
)
:
Seq
[
String
]
def
getStats
(
doubles:
Double
*
)
: (
Double
,
Double
,
Double
)
def
getTransform
(
key:
String
,
stats: ⇒ (
Double
,
Double
,
Double
)
)
:
Layer
def
getTransformKeys
(
field:
DataType
,
data:
Seq
[_]
)
:
Seq
[(
String
,
Array
[
Double
])]
def
initKeys
(
dataFrames:
DataFrame
*
)
: (
List
[
String
],
Array
[
String
])
final
def
isInstanceOf
[
T0
]
:
Boolean
Definition Classes
Any
lazy val
logger
:
Logger
Attributes
protected[this]
Definition Classes
Logging
def
momentsToStats
(
moments:
Array
[
Double
]
)
: (
Double
,
Double
,
Double
)
final
def
ne
(
arg0:
AnyRef
)
:
Boolean
Definition Classes
AnyRef
final
def
notify
()
:
Unit
Definition Classes
AnyRef
final
def
notifyAll
()
:
Unit
Definition Classes
AnyRef
val
path
:
String
def
print
(
uuidToDoubles:
Map
[
UUID
,
Array
[
Double
]]
,
layers:
Seq
[
Layer
]
,
keys:
Seq
[
String
]
,
transformKeys:
Seq
[
String
]
,
header:
String
)
:
Unit
val
strategy
:
ModelingStrategy
final
def
synchronized
[
T0
]
(
arg0: ⇒
T0
)
:
T0
Definition Classes
AnyRef
def
transformScalars
(
doubles:
Seq
[
Double
]
)
:
Result
def
uuidMap
(
keys:
Seq
[
String
]
)
:
Map
[
UUID
,
String
]
final
def
wait
()
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
,
arg1:
Int
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
final
def
wait
(
arg0:
Long
)
:
Unit
Definition Classes
AnyRef
Annotations
@throws
(
...
)
def
zipLocal
[
T
]
(
seq:
Seq
[
T
]*
)
(
implicit
arg0:
ClassTag
[
T
]
)
:
Seq
[
Seq
[
T
]]
Inherited from
Serializable
Inherited from
Serializable
Inherited from
Product
Inherited from
Equals
Inherited from
Logging
Inherited from
AnyRef
Inherited from
Any
Ungrouped