Demos Applications Components Optimizers Experiments Datasets

Public Datasets

Java 8 Neural Networks with CuDNN and Aparapi


Project maintained by SimiaCryptus Java, CuDNN, and CUDA are others' trademarks. No endorsement is implied.

Public Datasets

These notebooks document the various training datasets implemented in MindsEye for training convenience.

  1. com.simiacryptus.mindseye.test.data.CIFAR10

    Description: Mirrored from https:\/\/www.cs.toronto.edu\/~kriz\/cifar.html For more information, and for citation, please see:Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009. https:\/\/www.cs.toronto.edu\/~kriz\/learning-features-2009-TR.pdf

    1. CIFARDatasetDemo

      Description: The type Image classifier run base.

      Status: OK

  2. com.simiacryptus.mindseye.test.data.Caltech101

    Description: Caltech 101 Images When using, please cite: L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual modelsfrom few training examples: an incremental Bayesian approach tested on 101 object categories. IEEE. CVPR 2004,Workshop on Generative-Model Based Vision. 2004 For more information see http:\/\/www.vision.caltech.edu\/Image_Datasets\/Caltech101\/

    1. CIFARDatasetDemo

      Description: The type Image classifier run base.

      Status: OK

    2. CaltechDatasetDemo

      Description: The type Image classifier run base.

      Status: OK

    3. MNistDatasetDemo

      Description: The type Image classifier run base.

      Status: OK

  3. com.simiacryptus.mindseye.test.data.MNIST

    Description: References: [LeCun et al., 1998a] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied todocument recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.See Also: http:\/\/yann.lecun.com\/exdb\/mnist\/

    1. MNistDatasetDemo

      Description: The type Image classifier run base.

      Status: OK